## [bb] Vector/Matrix Lib by AntonyWells [ 1+ years ago ]

Started by BlitzBot, June 29, 2017, 00:28:42

#### BlitzBot

Title : Vector/Matrix Lib
Author : AntonyWells
Posted : 1+ years ago

Description : V33 and a half.

Added Gen_final_matrix..basically this totally simplifies the whole show, just use this to generate a transformation matrix,

ePitch=20
eYaw=50
rRoll=0
X#=5
y#=5
z#=5
local tMatrix#[16]

gen_final_matrix( ePitch,eYaw,eRoll,x,y,z,tMatrix)

The result will be placed in tMatrix(Or whatever you call it, name is tied.)
V1.1

Added functions to generate pitch/yaw/roll matrices and also a function to multiple two matrices by each other into a third output matrix(vital!)

Basically to transform a point by a given pitch,yaw,roll as in blitz, do this,
local pitchMatrix#[16],yawMatrix#[16],rollMatrix#[16]
local tempMatrix#[16],finalMatrix#[16],positionMatrix#[16]
gen_pitch_matrix( pitchMatrix,pitch)
gen_yaw_matrix( yawMatrix,yaw)
gen_roll_matrix( rollMatrix,roll)
gen_position_matrix( positionMatrix,x,y,z)
multi_mat( pitchMatrix,yawMatrix,tempMatrix)
multi_mat( tempMatrix,rollMatrix,yawMatrix)
multi_mat( rollMatrix,positionMatrix,finalMatrix)

Now in final matrix you have a matrix that will transform any vector by the combined pitch/yaw/roll as expected.

V1.0
-
Perform matrice operations/transforms etc.

There's also a tangent function in there to generate tangent space coords for normal/bump-mapping.

Matrices are 16 element constant arrays.

For example,

local myMatrix[16]

matrixIdentity( myMatrix)

The reason being is there's no need to pass/collect the data, as the function works *directly* on the passed object. This is important for these type of mass use funcs...

Also, vector(I.e 3 part variables) are 3 element constant arrays.

i.e, local vectorA[3]

myVectorFunc( vectorA)
(btw I believe the triangle normal functions were culled from somewhere else..I know I didn't write them anyway, but definitely freeware..or I wouldn't have used them in the first place)

Code :
Code (blitzbasic) Select
`Function matrixIdentity(matrix#[16])  matrix[ 0] = 1.0;  matrix[ 1] = 0.0;  matrix[ 2] = 0.0;  matrix[ 3] = 0.0;  matrix[ 4] = 0.0;  matrix[ 5] = 1.0;  matrix[ 6] = 0.0;  matrix[ 7] = 0.0;  matrix[ 8] = 0.0;  matrix[ 9] = 0.0;  matrix[10] = 1.0;  matrix[11] = 0.0;  matrix[12] = 0.0;  matrix[13] = 0.0;  matrix[14] = 0.0;  matrix[15] = 1.0;End FunctionFunction gen_pitch_matrix(matrix#[16]) matrix[0]=1:matrix[1]=0:matrix[2]=0:matrix[3]=0 matrix[4]=0:matrix[5]=Cos(a):matrix[6]=Sin(a):matrix[7]=0 matrix[8]=0:matrix[9]=-Sin(a):matrix[10]=Cos(a):matrix[11]=0 matrix[12]=0:matrix[13]=0:matrix[14]=0:matrix[15]=1End FunctionFunction gen_yaw_mat(matrix#[16]) matrix[0]=Cos(a):matrix[1]=0:matrix[2]=-Sin(a):matrix[4]=0 matrix[4]=0:matrix[5]=1:matrix[6]=0:matrix[7]=0 matrix[8]=Sin(a):matrix[9]=0:matrix[10]=Cos(a):matrix[11]=0 matrix[12]=0:matrix[13]=0:matrix[14]=0:matrix[15]=0End FunctionFunction gen_roll_matrix(matrix#[16]) matrix[0]=Cos(a):matrix[1]=Sin(a):matrix[2]=0:matrix[3]=0 matrix[4]=-Sin(a):matrix[5]=Cos(a):matrix[6]=0:matrix[7]=0 matrix[8]=0:matrix[9]=0:matrix[10]=0:matrix[11]=0 matrix[12]=0:matrix[13]=0:matrix[14]=0:matrix[15]=0End FunctionFunction gen_position_matrix(matrix#[16],x#,y#,z#) matrix[0]=1:matrix[1]=0:matrix[2]=0:matrix[3]=x matrix[4]=0:matrix[5]=1:matrix[6]=0:matrix[7]=y matrix[8]=0:matrix[9]=0:matrix[10]=0:matrix[11]=z matrix[12]=0:matrix[13]=0:matrix[14]=0:matrix[15]=1End FunctionFunction multi_mat(matrix1#[16],matrix2#[16],matrix3#[16]) ;Takes matrices i1 and i2 and combines them, resulting in i3 For m=0 To 3 For m1=0 To 3 matrix3[ m1*4+m]=0 For m2=0 To 3 matrix3[ m1*4+m]=matrix3[ m1*4+m1]+matrix2[m2*4+m]*matrix1[m1*4+m2] Next Next NextEnd FunctionFunction gen_final_matrix( pitch#,yaw#,roll#,x#,y#,z#,outMatrix#[16]) Local pitchMatrix#[16],yawMatrix#[16],rollMatrix#[16] Local positionMatrix#[16],tempMatrix#[16] gen_pitch_matrix( pitchMatrix,pitch) gen_yaw_matrix( yawMatrix,yaw) gen_roll_matrix( rollMatrix,roll) gen_position_matrix( positionMatrix,x,y,z) multi_mat(pitchMatrix,yawMatrix,tempMatrix) multi_mat(tempMatrix,rollMatrix,pitchMatrix) multi_mat(pitchMatrix,positionMatrix,outMatrix)End Function;//////////////////////////;// Invert a matrix. (Matrix MUST be orhtonormal!);//   in - Input matrix;//   out - Output matrix;//////////////////////////Function matrixInvert(in#[16], out#[16]) ; // Transpose rotation  out[ 0] = in[ 0];  out[ 1] = in[ 4];  out[ 2] = in[ 8];  out[ 4] = in[ 1];  out[ 5] = in[ 5];  out[ 6] = in[ 9];  out[ 8] = in[ 2];  out[ 9] = in[ 6];  out[10] = in[10];   ; // Clear shearing terms  out[3] = 0.0;f; out[7] = 0.0f; out[11] = 0.0f; out[15] = 1.0f; ; // Translation is minus the dot of tranlation And rotations  out[12] = -(in[12]*in[ 0]) - (in[13]*in[ 1]) - (in[14]*in[ 2]);  out[13] = -(in[12]*in[ 4]) - (in[13]*in[ 5]) - (in[14]*in[ 6]);  out[14] = -(in[12]*in[ 8]) - (in[13]*in[ 9]) - (in[14]*in[10]);End Function;//////////////////////////;// Multiply a vector by a matrix.;//   vecIn - Input vector;//   m - Input matrix;///////////////////////////Function vecMatMult(vecIn#[3],m#[16], vecOut#[3])  vecOut[0] = (vecIn[0]*m[ 0]) + (vecIn[1]*m[ 4]) + (vecIn[2]*m[ 8]) + m[12];  vecOut[1] = (vecIn[0]*m[ 1]) + (vecIn[1]*m[ 5]) + (vecIn[2]*m[ 9]) + m[13];  vecOut[2] = (vecIn[0]*m[ 2]) + (vecIn[1]*m[ 6]) + (vecIn[2]*m[10]) + m[14];End Function;//////////////////////////;// Multiply a vector by just the 3x3 portion of a matrix.;//   vecIn - Input vector;//   m - Input matrix;//   vecOut - Output vector;//////////////////////////;voidFunction vecMat3x3Mult(vecIn#[3], m#[16], vecOut#[3])   vecOut[0] = (vecIn[0]*m[ 0]) + (vecIn[1]*m[ 4]) + (vecIn[2]*m[ 8]);  vecOut[1] = (vecIn[0]*m[ 1]) + (vecIn[1]*m[ 5]) + (vecIn[2]*m[ 9]);  vecOut[2] = (vecIn[0]*m[ 2]) + (vecIn[1]*m[ 6]) + (vecIn[2]*m[10]);End FunctionFunction vecCrossProd (vecA#[3], vecB#[3], vecOut#[3])   vecOut[0] =  vecA[1]*vecB[2] - vecA[2]*vecB[1];   vecOut[1] =  vecA[2]*vecB[0] - vecA[0]*vecB[2];   vecOut[2] =  vecA[0]*vecB[1] - vecA[1]*vecB[0];End FunctionFunction vecNormalize#(vec#[3])   mag# = Sqr(vec[0]*vec[0] +vec[1]*vec[1] +vec[2]*vec[2]);   ;// don't divide by zero   If (mag=0)      vec[0] = 0.0;f;      vec[1] = 0.0;f;      vec[2] = 0.0;f;      Return(0.0);   EndIf   vec[0] =vec[0]/mag;   vec[1] =vec[1]/mag;   vec[2] =vec[2]/mag;   Return(mag);End FunctionFunction vecDotProd#(vecA#[3], vecB#[3])   Return(vecA[0]*vecB[0] +vecA[1]*vecB[1] +vecA[2]*vecB[2]);End FunctionFunction vecCopy (vecIn#[3], vecOut#[3])   vecOut[0] = vecIn[0];   vecOut[1] = vecIn[1];   vecOut[2] = vecIn[2]; End FunctionFunction vector( v1#,v2#,v3#,vect#[3]) vect[0]=v1 vect[1]=v2 vect[2]=v3End FunctionFunction tang( vertex#[3], vertex2#[3], vertex3#[3],texcoords#[2], texcoords2#[2], texcoords3#[2],polynormal#[3], tangent#[3], binormal#[3], normal#[3] )Local txb#[3];Local v1#[3],v2#[3]VECTOR( vertex2[0] - vertex[0], texcoords2[0] - texcoords[0], texcoords2[1] - texcoords[1],v1 );VECTOR( vertex3[0] - vertex[0], texcoords3[0] - texcoords[0], texcoords3[1] - texcoords[1],v2 );crossProduct( v1, v2,txb );If( Abs( txb[0] ) > EPSILON )tangent[0]  = -txb[1] / txb[0];binormal[0] = -txb[2] / txb[0];EndIfv1[0] = vertex2[1] - vertex[1];v2[0] = vertex3[1] - vertex[1];CrossProduct( v1, v2,txb );If( Abs( txb[0] ) > EPSILON ) tangent[1]  = -txb[1] / txb[0]; binormal[1] = -txb[2] / txb[0];EndIfv1[0] = vertex2[2] - vertex[2];v2[0] = vertex3[2] - vertex[2];CrossProduct( v1, v2,txb);If( Abs( txb[0] ) > EPSILON ) tangent[2]  = -txb[1] / txb[0]; binormal[2] = -txb[2] / txb[0];EndIfNormalize( tangent );Normalize( binormal );;// Make a normal based on the tangent And binormal b/c it may be different than the poly's;// normal, this normal being computed here is betterCrossProduct( tangent, binormal,normal);Normalize( normal );;// Make tangent space vectors orthogonal by recomputing the binormal with the corrected ;// tangent space normal.CrossProduct( tangent, normal,biNormal);Normalize( binormal );If( vecDotProd( normal, polynormal ) < 0.0 ) normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; EndIfEnd FunctionFunction TriangleNormal#(v1#[3],v2#[3],v3#[3],o#[3]);SubVector v1,v2,ux#=VectorX()uy#=VectorY()uz#=VectorZ();SubVector Cx#,Cy#,Cz#,Bx#,By#,Bz#vx#=VectorX()vy#=VectorY()vz#=VectorZ();CrossProduct vx#,vy#,vz#,ux#,uy#,uz#;Normalize vectorx,vectory,vectorz;Return Ax#*vectorx+Ay#*vectory+Az#*vectorzEnd FunctionFunction VectorX#()Return vectorxEnd FunctionFunction VectorY#()Return vectoryEnd FunctionFunction VectorZ#()Return vectorzEnd FunctionFunction VectorW#()Return vectorwEnd FunctionFunction SubVector(v1#[3],v2#[3],o#[3]) o[0]=v1[0]-v2[0] o[1]=v1[1]-v2[1] o[2]=v1[2]=v2[2]End FunctionFunction Normalize(v#[3])If v[0]=0 And v[1]=0 And v[2]=0 Return m#=Magnitude(v) v[0]=v[0]/m# v[1]=v[1]/m# v[2]=v[2]/m#End FunctionFunction CrossProduct(v1#[3],v2#[3],o#[3])o[0]=v1[1]*v2[2]-v2[2]*v2[1]o[1]=v1[2]*v2[0]-v1[0]*v2[2]o[2]=v1[0]*v2[1]-v1[1]*v2[0]End FunctionFunction Magnitude(v#[3]) Return Sqr( (v[0]*v[0]) + (v[1]*v[1]) + (v[2]*v[2]) ) End FunctionFunction TriangleNX#(surf,tri_no)v0=TriangleVertex(surf,tri_no,0)v1=TriangleVertex(surf,tri_no,1)v2=TriangleVertex(surf,tri_no,2)ax#=VertexX#(surf,v1)-VertexX#(surf,v0)ay#=VertexY#(surf,v1)-VertexY#(surf,v0)az#=VertexZ#(surf,v1)-VertexZ#(surf,v0)bx#=VertexX#(surf,v2)-VertexX#(surf,v1)by#=VertexY#(surf,v2)-VertexY#(surf,v1)bz#=VertexZ#(surf,v2)-VertexZ#(surf,v1)nx#=(ay#*bz#)-(az#*by#)Return nx#End FunctionFunction TriangleNY#(surf,tri_no)v0=TriangleVertex(surf,tri_no,0)v1=TriangleVertex(surf,tri_no,1)v2=TriangleVertex(surf,tri_no,2)ax#=VertexX#(surf,v1)-VertexX#(surf,v0)ay#=VertexY#(surf,v1)-VertexY#(surf,v0)az#=VertexZ#(surf,v1)-VertexZ#(surf,v0)bx#=VertexX#(surf,v2)-VertexX#(surf,v1)by#=VertexY#(surf,v2)-VertexY#(surf,v1)bz#=VertexZ#(surf,v2)-VertexZ#(surf,v1)ny#=(az#*bx#)-(ax#*bz#)Return ny#End FunctionFunction TriangleNZ#(surf,tri_no)v0=TriangleVertex(surf,tri_no,0)v1=TriangleVertex(surf,tri_no,1)v2=TriangleVertex(surf,tri_no,2)ax#=VertexX#(surf,v1)-VertexX#(surf,v0)ay#=VertexY#(surf,v1)-VertexY#(surf,v0)az#=VertexZ#(surf,v1)-VertexZ#(surf,v0)bx#=VertexX#(surf,v2)-VertexX#(surf,v1)by#=VertexY#(surf,v2)-VertexY#(surf,v1)bz#=VertexZ#(surf,v2)-VertexZ#(surf,v1)nz#=(ax#*by#)-(ay#*bx#)Return nz#End Function`

JoshK(Posted 1+ years ago)

Well does gen_pitch_matrix() have one or two parameters?  And where is gen_yaw_matrix?

bytecode77(Posted 1+ years ago)

did you even test/use this matrix lib before you posted it here, or did you just write it down and put it here?the matrixIdentity function is crap as well.

N(Posted 1+ years ago)

Riiiiight.  Three year old math library and you're complaining to a banned user?

Naughty Alien(Posted 1+ years ago)

HAHAHAHAHHHAH

markcw(Posted 1+ years ago)

gen_yaw_matrix() is gen_yaw_mat().Agreed, it's not very tidy code but what do you expect, it's free. I think it's pretty good code overall.